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Abstract

The paper features the mathematical model representing the analytical calculation of phonon and electron heat transfer analysis of
thermal conductivity for nanofluids. The mathematical model was developed on the basis of statistical nanomechanics. We have made
the detailed analysis of the influence of temperature dependence on thermal conductivity for nanofluids. On this basis are taken into
account the influences such as formation of nanolayer around nanoparticles, the Brown motion of solid nanoparticles and influence
of diffusive-ballistic heat transport.

The analytical results obtained by statistical mechanics are compared with the experimental data and they show relatively good
agreement.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Billions of years ago, when enormous quantities of
energy were released after the Big Bang, the fundamental
particles followed by molecules were formed into more or
less complex structures according to certain coincidental
events. In the period of several billion years of develop-
ment, the Earth was also shaped as one of the planets
in space with life on it. By some marvellous accident life
was created on it, yet with a one flaw. In the process of
evolution, Mother Nature formed human beings. By
observing nature and through their own intelligence the
human beings managed to subordinate all living beings
in the process of evolution. At the same time, they also
gradually learn how to exploit substances and materials.
The ability of making tools and devices distinguished
men from other living beings. Around 400,000 years
ago, people were capable of making wooden spears and
lances. They made tools and devices twice their own size.
It has always been people’s wish to make ever larger
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machines and devices. The reason is probably very simple,
namely the leaders ruling at the time wanted to be ranked
among the immortals. In Egypt, for example, the builders
constructed pyramids in 2600 BC for the needs of the
pharaohs, with the tallest being 147 m high Keops’ pyra-
mid. In 1931, the 449 m tall Empire State Building was
built in New York. Currently, the last preparations are
underway in Shanghai to construct a 1000 m high housing
building. With the development of increasingly larger
devices many inventors and scientists wished to reveal
the secrets of micro cosmos. For centuries, clock makers
were the most important representatives of those dimin-
ishing the size of devices. In the 17th century, the inven-
tion of the microscope opened up the way to the
observation of microbes, plant and animal cells. Only in
the late 20th century, micro-devices were technologically
refined. Today, the size of transistors in integrated circuits
is 0.18 lm and the transistors measuring 10 nm are
already being developed in laboratories.

December 29, 1958 is thought to be date of the begin-
ning of micromechanics and nanomechanics, when at the
California Institute of Technology the Nobel prize winner
Richard P. Feynman delivered a lecture within the Ameri-
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Nomenclature

A Avsec model
Cp heat capacity at constant pressure per mole
CLS Chung–Lee–Starling
HC Hamilton–Crosser model
kB Boltzmann constant
L temperature dependent constant
lel electron mean free path
lph phonon mean free path
Kn Knudsen number
LJ Lennard–Jones
M molecular mass
N number of molecules in system
Rm universal gas constant
T temperature
t time
T* reduced temperature
Tc critical temperature
vel electron speed
V volume
Vc critical volume
Zcoll collision number
X Xue model
a volume fraction
b diffusion term

e Lennard–Jones parameter
hD Debye temperature
hE Einstein temperature
k thermal conductivity
K heat conduction transport coefficient
lr relative dipole moment
j correction factor for hydrogen bonding effect
js shear viscosity
q density
r Lennard–Jones parameter
re electrical conductivity
w influence of polyatomic molecules
x acentric factor
X collision integral
X* reduced collision integral
s relaxation time

Superscripts and subscripts
0 dilute gas state
c critical condition
el electron
ph phonon
p influence of high densities
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can Physical Association. He introduced at the lecture a
vision of reducing the size of machines to nano-size. At that
time, professor Feynman could not see the economic impli-
cations of the devices made on the basis of nanotechnol-
ogy. Nanomechanics and micromechanics are becoming
increasingly important in today’s industry. The concepts
of invisible aircraft, pumps . . . are now a reality. At the
same time, problems have arisen in advanced mechanics
not even dreamed of before. Thermodynamic and trans-
port properties of a gas flowing through a tube with the
diameter of a few nanometers are modelled completely dif-
ferently due to a great influence of surface effects. Even
classical hydromechanics is not of much help here. In addi-
tion to temperature and pressure the Knudsen number is
becoming increasingly important. Euler’s equation gives
bad results almost over the entire range, Navier–Stokes’
equation at Knudsen number 0.1 and Burnett’s equation
at Knudsen number 10. However, in order to analyse free
molecular flow in micro and nanochannels the non-equilib-
rium mechanics and the original Boltzmann’s equation
have to be used. In this case, computation of hydrome-
chanical problems is possible over the entire range of
Knudsen, temperatures and pressures [1,2].

The term nanofluid is envisioned to describe a solid–
liquid mixture which consists of a nanoparticles and a base
liquid and this is one of new challenges for thermo-sciences
provided by the nanotechnology. the possible application
area of nanofluids is in advanced cooling systems, in
micro/nano electromechanical systems . . . the investigation
of the effective thermal conductivity of liquid with nano-
particles attract much more interest experimentally and
theoretically. The effective thermal conductivity of nano-
particle suspension can be much higher than for the fluid
without nanoparticles.

2. Calculation of thermal conductivity for pure fluid [3–6]

Accurate knowledge of non-equilibrium or transport
properties of pure gases and liquids, is essential for the
optimum design of the different items of chemical process
plants, for determination of intermolecular potential
energy functions and for development of accurate theories
of transport properties in dense fluids. Transport coeffi-
cients describe the process of relaxation to equilibrium
from a state perturbed by application of temperature, pres-
sure, density, velocity or composition gradients. The theo-
retical description of these phenomena constitutes that part
of non-equilibrium statistical mechanics that is known as
kinetic theory.

In the presented paper will be presented Chung–Lee—
Starling model (CLS) [4,5]. Equations for the thermal con-
ductivity are developed based on kinetic gas theories and
correlated with the experimental data. The low-pressure
transport properties are extended to fluids at high densities
by introducing empirically correlated, density dependent
functions. These correlations use acentric factor x, dimen-
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sionless dipole moment lr and empirically determined asso-
ciation parameters to characterize molecular structure
effect of polyatomic molecules j, the polar effect and the
hydrogen bonding effect. In this paper are determined
new constants for fluids.

The dilute gas thermal conductivity for CLS model is
written as

k ¼ kk þ kp ð1Þ

where

kk ¼ k0

1

H 2

þ B6Y
� �

ð2Þ

The thermal conductivity in the region of dilute gases for
CLS model is written as

k0 ¼ 3119:41
g0

M

� �
w ð3Þ

where w represents the influence of polyatomic energy con-
tributions to the thermal conductivity. We used the Taxman
theory. He solved the problem of influence of internal de-
grees of freedom on the basis of WCUB theory [3] and
the approximations given by Mason and Monschick [2].
The final expression for the influence of internal degrees
of freedom is represented as

w ¼ 1þ C�int �
0:2665þ ð0:215�1:061bÞ

Zcoll
þ 0:28288

C�
int

Zcoll

bþ 0:6366
Zcoll
þ 1:061bC�

int

Zcoll

8<
:

9=
; ð4Þ

where C�int is the reduced internal heat capacity at constant
volume, b is the diffusion term and Zcoll is the collision
number. The heat capacities are calculated by use of statis-
tical thermodynamics. The paper features all important
contributions (translation, rotation, internal rotation,
vibration, intermolecular potential energy and influence
of electron and nuclei excitation). The residual part kp to
the thermal conductivity can be represented with the fol-
lowing equation:

kp ¼ 0:1272
T c

M

� �1=2
1

V 2=3
c

 !
B7Y 2H 2

T
T c

� �1=2

ð5Þ

where kp is in W/mK.

H 2 ¼ B1½1� expð�B4Y Þ� 1
Y
þ B2G1 expðB5Y Þ þ B3G1

� �

� 1

B1B4 þ B2 þ B3

ð6Þ

The constants B1–B7 are linear functions of acentric factor,
reduced dipole moment and the association factor

Bi ¼ b0ðiÞ þ b1ðiÞxþ b2ðiÞl4
r þ b3ðiÞj; i ¼ 1; 10 ð7Þ

where the coefficients b0, b1, b2 and b3 are presented in the
work of Chung et al. [4,5].
3. The calculation of thermal conductivity for pure solids

[7–11]

3.1. Electronic contribution to the thermal conductivity

The fundamental expression for electronic contribution
kel to the thermal conductivity can be calculated on the
basis of the theory of thermal conductivity for classical gas:

kel ¼
1

3
ncelvellel ð8Þ

where cel is the electronic heat capacity (per electron), n is
the number of conduction electrons per volume, vel is the
electron speed and lel is the electron mean free path. In
Eq. (8) it is assumed that in temperature gradient electrons
travel just the same average distance l before transferring
their excess thermal energy to the atoms by collisions.

We can express the mean free path with the help of elec-
tron lifetime s (lel = vFs):

kel ¼
p2nk2

BT s
3m

ð9Þ

With the help of Drude theory [6,7] we can express thermal
conductivity as the function of electrical conductivity re:

kel ¼ reLT ð10Þ

where L is the temperature dependent constant.
3.2. Phonon contribution to the thermal conductivity

It is more difficult to determine the thermal conductivity
when there are non-free electrons. Solids which obey this
rule we called non-metallic crystals. Because the atoms in
a solid are closely coupled together, an increase in temper-
ature, will be transmitted to the other parts. In the modern
theory, heat is being considered as being transmitted by
phonons, which are the quanta of energy in each mode
of vibration. We can again use the expression:

kph ¼
1

3
Cvl ð11Þ
3.3. The calculation of electronic contribution using

Eliashberg transport coupling function

In the book of Grimwall [9] we can find the analytical
expression for the electrical conductivity r:

re ¼
ne2

mb

sðe;~kÞ
D E

ð12Þ

In Eq. (7) mb represents electron band mass and s is an
electron lifetime that depends both on the direction of
the wave vector~k and on the energy distance e. The brack-
ets h� � �i describe an average over all electron states. We can
also describe the electronic part of thermal conductivity
with the help of Eq. (12):
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kel ¼
nkBT

mb

ek � EF

kBT

� �2

sðe;~kÞ
* +

ð13Þ

The lifetime for the scattering of electrons by phonons con-
tains quantum-mechanical quantum matrix elements for
the electron–phonon interaction and statistical Bose–Ein-
stein and Fermi–Dirac factors for the population of pho-
non and electron states. A very useful magnitude in the
context is the Eliashberg transport coupling function
a2

trF ðxÞ. A detailed theoretical expression is possibly to
find in the work of Grimwall [9,11]. The Eliashberg cou-
pling function allows us to write the thermal conductivity
in the next expression:

1

kel

¼ ð4pÞ2

L0T x2
pl

�
Z xmax

0

� �hx=kBT
½expð�hx=kBT � 1Þ�½1� expð��hx=kBT Þ�

� 1� 1

2p2

�hx
kBT

� �2
" #

a2
trF ðxÞ

(

þ 3

2p2

�hx
kBT

� �2

a2
trF ðxÞ

)
dx ð14Þ

We can describe the phonons by an Einstein model

a2
trF ðxÞ ¼ Adðx� xEÞ ð15Þ

a2F ðxÞ ¼ Bdðx� xEÞ ð16Þ

In Eqs. (15) and (16) are B and A constants. With the help
of Eqs. (15) and (16) we can solve integral in Eq. (14):

1

kel

¼ kECharðT=hEÞ
A
B
þ hE

T

� �2
1

2p2
3� A

B

� �" #
ð17Þ

In Eq. (17) kE represents the constant, hE is the Einstein
temperature and Char represents the lattice heat capacity
in Einstein model:

Char ¼ 3NkBT
hE

T

� �2 exp hE

T

� 	
exp hE

T

� 	
� 1


 �2
ð18Þ

Motokabbir and Grimwall [10] discussed about Eq. (17)
with A/B as a free parameter with assumption that A/
B � 1.

3.4. The phonon contribution to thermal conductivity

In an isotropic solid we can express the thermal conduc-
tivity as the integral over x containing the phonon density
of states F(x):

kph ¼
N
3V

v2
g

Z xmax

0

sðxÞCðxÞF ðxÞdx ð19Þ

where vg is some average phonon group velocity, C is the
heat capacity of a single phonon mode and the ratio N/V
is the number of atoms per volume.
A relaxation time can be expressed as the ratio of a
mean free path to a velocity, so that the thermal conductiv-
ity can be expressed as

kph ¼
N
3V

vg

Z xmax

0

lðxÞCðxÞF ðxÞdx ð20Þ

The crucial point in Eq. (20) is the determination of relax-
ation time. If we consider scattering in and out of state 1 we
can with help of quantum mechanics describe s(1):

1

sð1Þ ¼
2p
�h

X
2;3

jHð1; 2; 3Þj2 nð2Þnð3Þ
nð1Þ ð21Þ

jHð1; 2; 3Þj2 ¼ A
�h2c2X1=3

a

3MN
x1x2x3

v2
g

ð22Þ

The evaluation of s(1) in Eq. (21) requires a summation
over modes 2 and 3. This cannot be done analytically, so
it is not possible to give a closed-form expression for the
temperature dependence of the thermal conductivity valid
at all temperatures.

For the low temperature region (where the temperature
is lower than Debye temperature hD) we have used the
solution:

kph ¼ k0 exp � hD

T

� �
ð23Þ

where k0 is the constant.
For the high temperature region (T� hD) the solution

of Eq. (23) gives the result:

kph ¼
B

ð2pÞ3
MX1=3

a k3
Bh3

D

�h3c2T
ð24Þ

where B is dimensionless constant, Xa is atomic volume and
c is the Grüneisen constant. The relation between the Ein-
stein and Debye temperature may be written as

hE ¼ ð0:72 . . . 0:75ÞhD ð25Þ
4. The calculation of thermal conductivity for nanofluids [11–
37]

In nanoparticle fluid mixtures, other effects such as
microscopic motion of particles, particle structures and
surface properties may cause additional heat transfer in
nanofluids. Nanofluids also exhibit superior heat transfer
characteristics to conventional heat transfer fluids. One of
the main reasons is that suspended particles remarkably
increase thermal conductivity of nanofluids. The thermal
conductivity of nanofluid is strongly dependent on the
nanoparticle volume fraction. So far it has been an
unsolved problem to develop a sophisticated theory to pre-
dict thermal conductivity of nanofluids. The presented
paper is the attempt to calculate thermal conductivity of
nanofluid analytically. Hamilton and Crosser developed
the macroscopic model for the effective thermal conductiv-
ity of two-component mixtures as a function of the conduc-
tivity of the pure materials, the composition and shape of
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dispersed particles. The thermal conductivity can be calcu-
lated then with the next expression [12–34]:

k ¼ k0

kp þ ðn� 1Þk0 � ðn� 1Þaðk0 � kpÞ
kp þ ðn� 1Þk0 þ aðk0 � kpÞ

� �
ð26Þ

where k is the mixture thermal conductivity, k0 is the liquid
thermal conductivity, kp is the thermal conductivity of solid
particles, a is the volume fraction and n is the empirical
shape factor given by,

n ¼ 3

W
ð27Þ

where W is sphericity, defined as the ratio of the surface
area of a sphere (with a volume equal to that of a particle)
to the area of the particle. The volume fraction a of the par-
ticles is defined as

a ¼ V p

V 0 þ V p

¼ n
p
6

d3
p ð28Þ

where n is the number of the particles per unit volume and
dp is the average diameter of particles.

An alternative expression for calculating the effective
thermal conductivity of solid–liquid mixtures was intro-
duced by Wasp [34]:

k ¼ k0
kp þ 2k0 � 2aðk0 � kpÞ
kp þ 2k0 þ aðk0 � kpÞ

� �
ð29Þ

Comparison between Eqs. (26) and (29) show that Wasp
model is a special case with the sphericity of 1.0 of the
Hamilton and Crosser model. From the literature [14–34]
we can find some other models (Maxwell, Jeffrey, Davis,
Lu-Lin. . .) with almost identical analytical results.

In nanofluids is many possible mechanisms for the
anomalously increased effective thermal conductivity:

– Influence of nanolayer thickness
– Hyperbolic heat conduction
– Brownian motion
– Particle driven or thermally driven natural convection
– Hyperbolic thermal natural convection

4.1. The influence of nanolayer around nanoparticle

The HC model gives very good results for particles lar-
ger than 13 nm. For smaller particles the presented theory
gives wrong results with the deviation more than 100% in
comparison with experimental results. The presented theo-
retical models for the calculation of the thermal conductiv-
ity for nanofluids are only dependent on the thermal
conductivity of the solid and the liquid and their relative
volume fraction, but not on particle size and the interface
between particles and the fluid. For the calculation of effec-
tive thermal conductivity we have used Xue theory [18],
based on Maxwell theory and average polarization theory.
Because the interfacial shells are existed between the nano-
particles and the liquid matrix, we can regard both the
interfacial shell and the nanoparticle as a complex nano-
particle. So the nanofluid system should be regarded as
the complex nanoparticles dispersed in the fluid. We
assume that k is the effective thermal conductivity of the
nanofluid, kc and km are the thermal conductivity of the
complex nanoparticles and the fluid, respectively. The final
expression of Xue [18] model (X) is expressed with the next
equation:

9 1� a
kr

� �
k� k0

2kþ k0

þ a
kr

k� kc;x

kþ B2;xðkc;x � keÞ
þ 4

k� kc;y

2kþ ð1� B2;xÞðkc;y � kÞ

� 
¼ 0

ð30Þ

kc;j ¼ k1

ð1� B2;jÞk1 þ B2;jk2 þ ð1� B2;jÞkrðk2 � k1Þ
ð1� B2;jÞk1 þ B2;jk2 � B2;jkrðk2 � k1Þ

ð31Þ

We assume that the complex nanoparticle is composed of
an elliptical nanoparticle with thermal conductivity k2 with
halfradii of (a, b, c) and an elliptical shell of thermal con-
ductivity k1 with a thickness of t. In Eqs. (30) and (31) kr

represents the spatial average of heat flux component.
For simplicity we assume that all fluid particles are balls
and all the nanoparticles are the same rotational ellipsoid.

We have used the model of Yu and Choi [23] that the
nanolayer of each particle could be combined with the par-
ticle to form an equivalent particle and that the particle
volume concentration is so low that there is no overlap
of those equivalent particles. On this basis we can express
the effective volume fraction:

ae ¼ a 1þ h
r

� �3

ð32Þ

where h represents the liquid layer thickness. We have also
made the assumption that equivalent thermal conductivity
of the equivalent particles has the same value as the ther-
mal conductivity of particle. On the basis of all the pre-
sented assumptions we have derived the new model
(RHC) for thermal conductivity for nanofluids:

k ¼ kf

kpt þ ðn� 1Þkf � ðn� 1Þaeðkf � kptÞ
kpt þ ðn� 1Þkf þ aeðkf � kptÞ

� �
ð33Þ
4.2. Hyperbolic heat conduction

Heat transport in nanoparticles is predominantly by
electron and crystal vibrations, depends on material. Mac-
roscopic theories assume diffusive heat transport with
Laplace equation [41]:

qcp

oT
ot
¼ kr2T þ _q ð34Þ

where _qdxdy dz represent the internal energy source term.
In the steady state and with boundary conditions we can
express the upper equation in the next expression:

~J Q ¼ �k ~rT ð35Þ
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where JQ is the heat flux. In crystalline nanoparticles heat is
carried out by phonons, such phonons are created at ran-
dom, propagate directions, they are scattered by each
other. With the simplest theory due to Debye, the mean
free path of the phonon is given by expression [14]:

lph ¼
10aT m

cT
ð36Þ

where Tm is the melting point, a is the lattice constant and c
is the Grüneisen parameter. For typical nanoparticle such
as Al2O3 at room temperature we obtain the result that
the mean phonon free path is 35 nm [12]. Due to this rea-
son, phonons cannot diffuse in the 10 nm particles but must
move ballistically across the particle.

In metals, the heat is primarily carried by electrons,
which also exhibit diffusive motion at the macroscopic
level. Due to Drude formula we can express the mean elec-
tron free path as [11]:

lel ¼
9:2r2

s

qel ½lXcm� 10�9 ½m� ð37Þ

where qel is the electrical resistivity and rs is the dimension-
less parameter. For Cu is lel 350 nm, for Al is lel 65 nm. Due
to this reason, electrons cannot diffuse in the 10 nm parti-
cles but must move ballistically across the particle.

The mentioned analysis has shown that the assumption
that the heat transport developed on the basis of diffusive
phenomena is invalid. It is very difficult to demonstrate
how ballistic heat transport could be more effective than
a very fast diffusion transport [24,38]. In the future, we will
take into account the ballistic heat transfer phenomena in
nanoparticles too on the basis of Boltzmann law [38].

The ratio between the mean free path l and the charac-
teristic length L is called the Knudsen number [40]:

Kn ¼ l
L

ð38Þ

In the nanotechnology could be possibly that the Knudsen
number becomes comparable or higher that 1. As the result
the heat transport is no longer diffusive but becomes ballis-
tic. In that situation the usual Fourier law describing diffu-
sive transport must be generalized to cover conventionally
the mentioned transition [39].

q ¼ k
DT
L
ðdiffusive transportÞ ð39Þ

q ¼ KDT ðballistic transportÞ ð40Þ

where k represents the thermal conductivity and K the heat
conduction transport coefficient. The presented phenom-
ena we can solve on many different ways:

– direct application of universal Boltzmann equation
– the application of extended irreversible thermodynamics
– application of dual time lag equations
– numerical computer simulations of heat transport on

the basis of lattice theory consideration into account
slow and fast process of heat transport at the same time
In the presented paper we have focused on the extended
irreversible thermodynamics theory.

q ¼ kðT ; l=LÞDT
L

ð41Þ

The limiting behaviour of this generalized conductivity to
recover expressions in the suitable situations should be:

kðT ; l=LÞ ! kðT Þ for l=L! 0 ð42Þ

kðT ; l=LÞ ! kðT Þ
a

L
l
	 KðT ÞL for l=L!1 ð43Þ

where a is the constant depending on the system. On that
basis we obtain the next equation [40] for the determination
of real thermal conductivity in all regimes:

kðx; kÞ ¼ kðT Þ
1þ ixs1 þ

k2l2
1

1þixs2þ
k2l2

2

1þixs3þ
k2l2

3
1þixs4

ð44Þ

If we choose l2
n ¼ anþ1l2 with an = n2[(2n + 1)(2n � 1)]�1.

The presented assumption is of interest because it corre-
sponds to a detailed analysis of photon or phonon heat
transport [40]. The presented assumption leads to the next
expression:

kðT ; l=LÞ ¼ 3k

Kn2

Kn
tan�1ðKnÞ � 1

� 
ð45Þ

For the determination of effective thermal conductivity due
to electron heat transport and depending on Knudsen
number, we have used the same method as it is presented
in Eq. (45).
4.3. Brownian motion

In many authors (Koo, Kumar. . .) is postulated that the
enhanced thermal conductivity of a nanofluid is mainly,
due to Brownian motion which produces micro mixing.
Because of the small size of the particles in the fluids,
additional energy term can arise from motions induced
by stochastic (Brownian) and interparticle forces. Motion
of particles cause microconvection that enhances heat
transfer:

Koo etal: ½35; 36� : kBrownian ¼ 5� 104baqlcl

ffiffiffiffiffiffiffiffiffi
jT
qpD

s
f ;

f ¼ ð�6:04aþ 0:4705ÞT þ ð1722:3a� 134:63Þ ð46Þ

Kumar etal:½32� : kBrownian ¼ c
2kBT

pgd2
p

ð47Þ

Wang et al. [19]:
The heat transfer enhancement due to the Brownian

motion can be estimated with the known temperature of
the fluid and size of the particles. The increase of thermal
conductivity due to the rotational and translational motion
of spherical particle:
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kBrownian ¼ kfa
1:17ðkp � kfÞ2

ðkp þ 2kfÞ2
þ 5ð0:6� 0:028Þ ðkp � kfÞ
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 !
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Prasher [33]:

k ¼ k0

kp þ ðn� 1Þk0 � ðn� 1Þaðk0 � kpÞ
kp þ ðn� 1Þk0 þ aðk0 � kpÞ

� �
1þRePr

4

� �
ð49Þ

Re ¼ 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
18kBT
pqd

s
ð50Þ

where m is the kinematic viscosity of fluid. In our case we
have used the model for Brownian motion from Pra-
sher[33]. We have slightly corrected the Prasher equation
into the next expression:

k ¼ k0

kp þ ðn� 1Þk0 � ðn� 1Þaðk0 � kpÞ
kp þ ðn� 1Þk0 þ aðk0 � kpÞ

� �
� ð1þ CRemPrnÞ ð51Þ

where C represents the fitting parameter.
1

1.1

1.2

0.01 0.02 0.03 0.04

Th
er

m
al

 c
on

Volume fraction of the Cu nanoparticles

Fig. 2. Thermal conductivity of mixture copper nanoparticles + ethylene
glycol at various composition at 303 K.

Cu nanoparticles+ethylene glycol  

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

280 285 290 295 300 305
Temperature [K]

Th
er

m
al

 C
on

du
ct

iv
ity

ra
tio

 [-
]

Niz1 Niz2 Niz3 Niz4

Fig. 3. Analytical prediction of thermal conductivity of mixture copper
nanoparticles + ethylene glycol at various composition at various tem-
peratures (Niz1-a = 0.01, Niz2-a = 0.02, Niz3-a = 0.03, Niz4-a = 0.04).
5. Results and comparison with experimental data

In the presented paper we will show analytical computa-
tions for the mixtures between copper nanoparticles and
ethylene glycol and also for the mixture between aluminum
oxide (Al2O3) nanoparticles and water. The copper nano-
particles dispersed in the fluid are very interesting for nano-
fluid industrial application due to very high thermal
conductivity in comparison with copper or aluminum oxi-
des. In our case we have used experimental results from the
literature [15] where copper average nanoparticles diameter
is smaller than 10 nm.

Fig. 1 shows temperature influence of electron mean free
path and Knudsen number. Fig. 2 shows the analytical cal-
culation of mixture between ethylene glycol and copper
nanoparticles for thermal conductivity ratio. The results
for thermal conductivity obtained by Avsec model (A)
model show relatively good agreement. Thermal conductiv-
ity predicted by Hamilton–Crosser (HC) model give much
lower values as Experimental results (Exp). Fig. 2 is devel-
oped on the theory that the nanolayer thickness is one of
the reasons for heat transfer enhancement. The theory
was made on the assumption that the nanolayer thickness
is one of the most important contribution [12] in very small
nanoparticles (d
 10 nm). At the some time we have
taken into account in A model the influence on ballistic
and diffusive heat conduction and the influence of Brown-
ian motion. On the assumption that the nanolayer thick-
ness is the most important contribution we have obtained
also very successful analytical results for viscosity and ther-
modynamic properties in nanofluids at room temperature
in comparison with experimental data [12]. Unfortunately
the nanofluid theory developed only on the theory, that
the nanolayer thickness is the reason for heat transfer
enhancement did not give the satisfactory results for the
temperature dependence problems. In principle, it is possi-



water+Al2O3  nanoparticles (no influence of 
Brownian motion)

1.00000

1.04000

1.08000

1.12000

1.16000

280 290 300 310 320 330
Temperature (K)

Th
er

m
al

 c
on

du
ct

iv
ity

 ra
tio

 (-
)

4596 J. Avsec / International Journal of Heat and Mass Transfer 51 (2008) 4589–4598
bly that the nanolayer thickness is temperature dependent,
but up to this date we did not find successful theory or
experimental results. Fig. 3 shows the analytical prediction
with A model the temperature influence of thermal conduc-
tivity of mixture between copper nanoparticles and ethyl-
ene glycol as the reference fluid.

Figs. 4–7 show the comparison between our new model
(A) and experimental results [26] for Al2O3 nanoparticles
and water as the reference fluid. Figs. 4–7 show the thermal
conductivity ratio in dependence of temperature field. The
average diameter of Al2O3 nanoparticles is 38.4 nm. Fig. 4
shows the predictions for Brownian motion velocity and
Knudsen number in dependence of temperature field
[42,43].
Mean free path and Knudsen number for 38.5 
nm nanoparticles of Al2O3
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Fig. 4. Knudsen number and mean free phonon path for Al2O3

nanoparticles with average diameter 38.5 nm.
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Fig. 5. Thermal conductivity of water + Al2O3 nanoparticles with average
diameter 38.4 nm at 1% of volume concentration of nanoparticles.
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Fig. 6. Analytical prediction of thermal conductivity and influence of
Brownian motion in the mixture water � Al2O3 nanoparticles with A
model (Niz1-a = 0.01, Niz2-a = 0.02, Niz3-a = 0.03, Niz4-a = 0.04).

0.80

0.90

1.00

1.10

1.20

1.30

290 300 310 320 330

Th
er

m
al

 c
on

du
ct

iv
ity

 ra
tio

 (-
)

Temperature (K)

water+Al2O3 nanoparticles at 4% volume concetration

A Exp.

Fig. 7. Thermal conductivity of water + Al2O3 nanoparticles with average
diameter 38.4 nm at 4% of volume concentration of nanoparticles.
Fig. 8 shows the thermal conductivity in the dependence
of temperature field and Knudsen number.
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Fig. 8. Thermal conductivity in dependence of Knudsen number (Niz1-
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The detailed analysis shows that the presented mathe-
matical model predicts the thermal conductivity very accu-
rately in dependence of volume fraction of nanoparticles
and temperature field.

6. Conclusion

The paper presents the mathematical model for compu-
tation of transport properties for nanofluids. The analytical
results are compared with the experimental data and show
relatively good agreement
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